
 i

A

MAJOR PROJECT REPORT ON

Unsupervised Deep Learning for

Enhanced Feature Extraction In Malaria Cell

Classification

Submitted in partial fulfillment of the requirement for the award of degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

SUBMITTED BY

BOINI SHRAVANI 218R1A0475

 CH. VENKATA SAI AVINASH 218R1A0476

CHINTALA VIGNAN 218R1A0477

 D VENKATA BHAVESH REDDY 218R1A0478

Under the Esteemed Guidance of

Dr. S. Ramakishore Reddy

Associate professor

DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENGINEERING

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS
(Approved by AICTE, Affiliated to JNTU Hyderabad, Accredited b NBA)

Kandlakoya(V), Medchal(M), Telangana – 501401

(2024-2025)

 ii

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

(Approved by AICTE, Affiliated to JNTU Hyderabad, Accredited

by NBA) Kandlakoya(V), Medchal Road, Hyderabad - 501 401

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CERTIFICATE

This is to certify that the major-project work entitled “Unsupervised Deep Learning for Enhanced

Feature Extraction in Malaria Cell Classification” is being submitted by B. SRAVANI bearing

Roll No 218R1A0475, CH. AVINASH bearing Roll No 218R1A0476, C. VIGNAN bearing Roll

No 218R1A0477, D. BHAVESH REDDY bearing Roll No 218R1A0478 in B.Tech IV-II semester,

Electronics and Communication Engineering is a record Bonafide work carried out during the

academic year 2024-25. The results embodied in this report have not been submitted to any other

University for the award of any degree.

 INTERNAL GUIDE HEAD OF THE DEPARTMENT

 Dr. S. Ramakishore Reddy Dr. SUMAN MISHRA

 EXTERNAL EXAMINER

 iii

ACKNOWLEDGEMENTS

We sincerely thank the management of our college CMR ENGINEERING COLLEGE

for providing required facilities during our project work.

We derive great pleasure in expressing our sincere gratitude to our Principal

Dr. A. S. REDDY for his timely suggestions, which helped us to complete the project work

successfully.

It is the very auspicious moment we would like to express our gratitude to

Dr. SUMAN MISHRA, Head of the Department, ECE for his consistent encouragement

during the progress of this project.

We take it as a privilege to thank our major project coordinator

Dr. T. SATYANARAYANA, Associate Professor, Department of ECE for the ideas that

led to complete the project work and we also thank him for his continuous guidance, support

and unfailing patience, throughout the course of this work.

We sincerely thank our major project internal guide Dr. S. RAMA KISHORE

REDDY, Associate Professor of ECE for guidance and encouragement in carrying out this

project work.

 iv

DECLARATION

We hereby declare that the major project entitled “Unsupervised Deep Learning

for Enhanced Feature Extraction In Malaria Cell Classification” is the work

done by us in campus at CMR ENGINEERING COLLEGE, Kandlakoya during

the academic year 2024-2025 and is submitted as major project in partial fulfilment

of the requirements for the award of degree of BACHELOR OF TECHNOLOGY

in ELECTRONICS AND COMMUNICATION ENGINEERING FROM

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY,

HYDERABAD.

BONNI SRAVANI 218R1A0475

 CHINTHALA VENKATA SAI AVINASH 218R1A0476

CHINTALA VIGNAN 218R1A0477

 D VENKATA BHAVESH REDDY 218R1A0478

 v

ABSTRACT

Malaria remains one of the most deadly infectious diseases worldwide, particularly

in resource-limited regions. Accurate and timely diagnosis is crucial for effective

treatment. This project presents an efficient and real-time malaria cell image

classification system using compact deep learning architectures deployed on the

NVIDIA Jetson TX2 edge device. The proposed system aims to classify infected

and uninfected cell images with high accuracy while maintaining computational

efficiency suitable for embedded systems. Leveraging lightweight convolutional

neural networks such as MobileNetV2 and SqueezeNet, we train models on

publicly available malaria cell image datasets. These models are optimized using

TensorRT and quantization techniques to reduce latency and power consumption

without compromising performance. Experimental results demonstrate that our

approach achieves a high classification accuracy with significantly lower inference

time, making it ideal for deployment in low-resource and remote healthcare

settings. The integration of deep learning and edge computing in this project offers

a promising solution for scalable and cost-effective malaria diagnosis.

 vi

CONTENTS

CHAPTERS PAGE NO

CERTIFICATE i

ACKNOWLEDGEMENTS ii

DECLARATION iii

ABSTRACT iv

CONTENTS v

CHAPTER-1

INTRODUCTION 1 – 3

1.1 OBJECTIVE OF THE PROJECT 2

1.2 ORGANIZATION OF THE PROJECT 3

CHAPTER-2

LITERATURE SURVEY 4

CHAPTER-3

SYSTEM ANALYSIS 5-10

3.1 Existing System 5

3.2 Disadvantages of Existing Systems 6

3.3 Proposed System 7

3.4 Advantages of the Proposed System 8

3.5 System Analysis 9

 vii

CHAPTERS PAGE NO

CHAPTER-4

SYSTEM REQUIREMENTS

11-16

4.1 SOFTWARE REQUIREMENT 11

4.2 HARDARE REQUIREMENT

4.3 System Implementations

11

15

CHAPTER-5

SYSTEM ENVIRONMENT 17-40

5.1 What is Machine Learning 17

5.2 What is Python 23

5.3 Challenges in Machines Learning

5.4 Advantages of Machine learning

5.5 Disadvantages of Machine Learning

5.6 Modules Used in Project

25

29

30

32

CHAPTER-6

WORKING

40 - 45

6.1 TYPES OF TESTS

6.2 System Test

40

41

CHAPTER-7

OUTPUT 46 - 52

7.1 SCREEN SHOTS 46

CHAPTER-8

CONCLUSION

53 - 54

8.1 CULMINATION 53

8.2 FUTURE SCOPE 54

REFERENCES 55

1

 CHAPTER-1

INTRODUCTION

 Introduction:

Malaria is a life-threatening disease caused by Plasmodium parasites, transmitted to

humans through the bites of infected Anopheles mosquitoes. According to the World

Health Organization (WHO), hundreds of millions of cases are reported annually, with

a significant portion of the burden falling on low-resource and rural regions. Early and

accurate diagnosis is essential for effective treatment and for reducing malaria-related

mortality. Traditionally, malaria diagnosis involves microscopic examination of blood

smears by trained professionals—a method that is time-consuming, labor-intensive, and

prone to human error.

With the advent of machine learning and deep learning, automated image classification

systems have shown great potential in improving diagnostic accuracy and speed.

However, deploying such systems in remote areas presents unique challenges,

particularly due to the limited availability of high-performance computing

infrastructure. This project addresses these challenges by leveraging compact deep

learning architectures and deploying them on the NVIDIA Jetson TX2, a powerful

yet energy-efficient embedded system designed for edge AI applications.

The primary goal of this project is to develop a robust, real-time malaria cell

classification system capable of operating on low-power embedded devices. To achieve

this, we explore lightweight convolutional neural network (CNN) architectures such as

MobileNetV2 and SqueezeNet, which are optimized for computational efficiency while

maintaining high accuracy. These models are trained using a publicly available dataset

of segmented cell images and are further optimized through model compression

techniques, including quantization and TensorRT acceleration, to enable real-time

inference on the Jetson TX2.

2

By combining the strengths of deep learning and edge computing, this project aims to

deliver a scalable, low-cost, and portable diagnostic tool, particularly beneficial in under-

resourced areas where access to laboratory facilities and medical experts is limited. The

successful implementation of

this system could significantly contribute to the global effort in combating malaria by

facilitating quicker, more reliable diagnoses in the field.

1.1 OVERVIEW OF THE PROJECT:

The project titled "Malaria Cell Image Classification Using Compact Deep Learning

Architectures on Jetson TX2" aims to develop an efficient and accurate system for the

classification of malaria-infected cells using deep learning. Malaria diagnosis traditionally

relies on manual examination of blood smears, which is time-consuming and prone to

human error. To address this, the project leverages compact deep learning models capable

of running on edge devices like the NVIDIA Jetson TX2, which offers powerful GPU

capabilities with low power consumption.

The system is designed to automatically classify cell images as parasitized or uninfected

by training convolutional neural networks (CNNs) on a publicly available malaria dataset.

Compact architectures such as MobileNet, SqueezeNet, and EfficientNet are explored to

ensure optimized performance on the Jetson TX2 platform without compromising

classification accuracy. The project demonstrates the feasibility of deploying AI-powered

medical diagnostic tools on portable,low-power devices, making it a promising solution

for use in remote and resource-constrained environments

To overcome these limitations, this project proposes an intelligent image classification

system using convolutional neural networks (CNNs) that can accurately differentiate

between parasitized and uninfected cells. The solution is designed to be lightweight and

optimized for real-time execution on NVIDIA Jetson TX2, a powerful yet compact

embedded AI computing platform. This enables the deployment of the system in low-

resource settings such as rural clinics or mobile diagnostic units, where access to advanced

medical facilities may be limited.

3

1.2 OBJECTIVE OF THE PROJECT:

The main objective of this project is to design and implement an efficient, accurate, and

lightweight deep learning-based system capable of automatically classifying malaria-infected

cells from microscopic images. The system is specifically built for deployment on the

NVIDIA Jetson TX2, an embedded AI platform known for its balance between performance

and power efficiency, making it ideal for real-time healthcare applications in remote and low-

resource environments. Traditional malaria diagnosis methods require manual examination

by trained professionals, which is not only time-consuming but also prone to human error.

The final goal is to develop a portable, scalable, and cost-effective diagnostic tool that can

aid healthcare workers in early malaria detection, especially in areas lacking advanced

medical infrastructure.

The system is designed to accurately identify and classify red blood cell images as either

parasitized or uninfected, reducing the dependency on manual diagnosis, which is often time-

consuming and error-prone. By leveraging lightweight convolutional neural network models

such as MobileNetV2 and SqueezeNet, the project aims to achieve high classification

accuracy while ensuring low power consumption and efficient performance suitable for edge

devices. The ultimate goal is to create a portable, AI-based diagnostic tool.

4

CHAPTER-2 LITERATURE SURVEY

Title Author(s) Description

Malaria Parasite

Detection Using Deep

Learning and

Smartphone

Microscopy

Bibin Wilson,

Aravind Kumar, et

al.

This study demonstrates the use of

convolutional neural networks (CNNs)

combined with mobile phone

microscopy for malaria detection. It

highlights the potential of deep learning

in achieving high accuracy in

classifying infected cells, suitable for

point-of-care diagnostics.

Automated Malaria

Detection Using Deep

Learning Algorithms

Rajaraman, S.,

et al.

The authors propose a deep learning-

based method using CNNs for detecting

malaria parasites in stained blood smear

images. Their system achieved high

accuracy, showing deep learning's

potential in medical diagnostics.

MobileNetV2:

Inverted Residual

Bottlenecks

Mark Sandler,

Andrew

Howard

Introduces MobileNetV2, a lightweight

deep learning model optimized for

mobile and embedded devices. This

architecture is highly relevant-power

platforms

Image Classification

on Embedded Devices
Forrest Iandola

This work presents SqueezeNet, a

compact CNN architecture that achieves

AlexNet-level accuracy with 50x fewer

parameters. It serves as a strong

candidate for real-time.

5

CHAPTER-3

SYSTEM ANALYSIS

 3.1 Existing System:

Traditional malaria diagnosis systems primarily rely on manual microscopic examination of

stained blood smears by trained medical professionals. While this method is considered the

gold standard for malaria detection, it is time-consuming, labor-intensive, and highly

dependent on the skill and experience of the examiner. Moreover, in many rural or resource-

limited regions where malaria is most prevalent, access to trained microscopists and quality

laboratory equipment is often limited or unavailable. These constraints significantly hinder

timely and accurate diagnosis, delaying treatment and increasing the risk of severe health

outcomes.

To address these challenges, researchers have explored the use of machine learning (ML) and

image processing techniques for automated malaria detection. Early ML approaches

employed handcrafted feature extraction methods such as color, texture, and shape analysis,

followed by classification using traditional algorithms like support vector machines (SVMs)

or k-nearest neighbors (KNN). Although these systems showed promise, their performance

was limited by the quality of feature engineering and they often struggled with generalization

to different datasets.

With the rise of deep learning, convolutional neural networks (CNNs) have demonstrated

superior performance in image classification tasks, including malaria cell detection. Systems

using CNNs such as VGGNet, ResNet, and Inception have achieved high accuracy on

publicly available malaria image datasets. However, these models are typically large and

computationally intensive, making them impractical for deployment on embedded devices or

in real-time field scenarios.

Some studies have attempted to reduce model complexity using lightweight architectures

such as MobileNet and SqueezeNet. While these models offer a better balance between

accuracy and computational efficiency, most existing solutions are still designed for desktop

6

or cloud-based inference, which introduces latency, privacy, and connectivity issues when

used in remote locations. Furthermore, limited work has been done on deploying and

optimizing these models specifically for embedded AI platforms like the NVIDIA Jetson

TX2, which is crucial for real-time, on-site medical diagnostics.

3.2 Disadvantages of Existing Systems:

1. Manual Diagnosis is Time-Consuming and Error-Prone: Traditional

methods rely on human examination of blood smears, which is slow, labor-intensive,

and prone to human error or fatigue.

2. Dependence on Skilled Personnel: Accurate diagnosis requires trained

microscopists, who may not be available in remote or low-resource areas where malaria

is most prevalent.

3. High Cost and Limited Accessibility: Advanced diagnostic tools and laboratory

setups are often expensive and inaccessible in underdeveloped or rural regions.

4. Limited Scalability: Manual and semi-automated systems cannot easily scale to

support large populations, especially during outbreaks.

5. Traditional ML Models Lack Robustness: Earlier machine learning

approaches depend heavily on hand-engineered features, which do not generalize well to

diverse datasets or varying image quality.

6. Deep Learning Models are Computationally Heavy: Most high- accuracy

CNN models (e.g., ResNet, VGG) require significant computational resources, making

them unsuitable for real-time inference on embedded or mobile platforms.

7. Cloud-Based Solutions Introduce Latency and Privacy : Systems that rely

on cloud computing for inference face issues such as network dependency, latency in

diagnosis, and potential data privacy risks.

7

8. Lack of Optimization for Edge Devices: Existing deep learning solutions

are often not optimized for edge deployment, which is crucial for real-time,

low-power applications like medical diagnosis in the field.

3.3 Proposed System:

The proposed system aims to develop an efficient, accurate, and real-time malaria cell

classification framework using compact deep learning architectures deployed on the NVIDIA

Jetson TX2 edge computing platform. Unlike traditional diagnostic methods that rely on

manual examination or computationally intensive cloud-based systems, this solution focuses

on providing a portable, low-cost, and autonomous diagnostic tool suitable for remote and

resource-limited regions.

At the core of this system is a lightweight convolutional neural network (CNN) architecture,

such as MobileNetV2 or SqueezeNet, which are specifically designed for environments with

limited computational power. These models are trained using a large, publicly available

dataset of blood smear images that includes both infected and uninfected red blood cells. The

models are then fine-tuned and optimized using techniques such as quantization, pruning,

and TensorRT acceleration to ensure minimal latency and energy consumption when

running on the Jetson TX2.

To make the system accessible and user-friendly, a simple graphical interface or embedded

application will be integrated, allowing healthcare workers to input images and instantly

receive classification results. The Jetson TX2’s onboard GPU and AI acceleration capabilities

enable real-time inference without the need for cloud connectivity, ensuring quick response

and preserving patient data privacy.

This system significantly enhances diagnostic capabilities in underserved areas by providing

a fast, accurate, and automated solution that does not rely on extensive infrastructure or expert

personnel. By deploying compact and efficient deep learning models on edge devices, the

proposed system has the potential to revolutionize malaria screening and support global

health initiatives focused on disease prevention and control.

8

3.4 Advantages of the Proposed System:

1. Real-Time Diagnosis: The system provides immediate classification results,

enabling faster diagnosis and quicker treatment decisions.

2. High Accuracy with Lightweight Models: Utilizes compact deep learning

architectures like MobileNetV2 and SqueezeNet, which offer high accuracy while being

computationally efficient.

3. Optimized for Edge Devices: Designed specifically for the NVIDIA Jetson TX2,

ensuring low latency, reduced power consumption, and no dependency on internet

connectivity.

4. Portable and Cost-Effective: The embedded setup is compact, affordable, and

ideal for deployment in remote or low-resource environments where traditional medical

infrastructure is lacking.

5. Autonomous and Easy to Use: Requires minimal human intervention, allowing

even non-experts to operate the system through a simple user interface.

6. Privacy-Preserving: On-device processing ensures patient data is not transmitted

over the internet, safeguarding sensitive medical information.

7. Reduced Workload on Medical Staff: Automates the process of analyzing

blood smear images, helping to reduce the burden on healthcare workers and eliminate

human error.

8. Scalable and Deployable in the Field: The system can be scaled and deployed

across multiple rural clinics or mobile units, making it an effective tool for large-scale

malaria screening.

9. Supports Global Health Initiatives: Aligns with global efforts to eradicate

malaria by providing accessible and scalable diagnostic support in endemic regions.

9

3.5 System Analysis:

The system analysis evaluates the functional and non-functional aspects of the proposed

malaria detection system to ensure its effectiveness, efficiency, and adaptability for real-

world deployment, particularly in low-resource environments.

1. Problem Definition:

Manual malaria diagnosis through microscopic blood smear examination is prone to human

error, time-consuming, and heavily reliant on trained professionals. There is a need for a fast,

accurate, portable, and automated system that can function independently of internet

connectivity and complex infrastructure.

2. System Requirements:

• Hardware: NVIDIA Jetson TX2 (embedded GPU), camera/microscope for image input,

power source (battery/portable unit).

• Software: Python, TensorFlow/Keras or PyTorch, OpenCV for image handling,

TensorRT for model optimization, GUI framework (e.g., PyQt or Tkinter).

• Dataset: Public malaria cell image dataset (e.g., NIH malaria dataset) consisting of

infected and uninfected cell images.

3. Functional Analysis:

• Input Acquisition: High-resolution cell images are captured using a microscope or

loaded from storage.

• Preprocessing: Images are resized, normalized, and enhanced for better model accuracy.

• Classification: A compact CNN model classifies images as infected or uninfected.

• Output Display: Results are displayed to the user through a simple interface, highlighting

infected cells if needed.

10

4. Non-Functional Analysis:

• Performance: Optimized models ensure low inference time (<1 second) with high

classification accuracy (>95%).

• Portability: The system is compact and lightweight, suitable for mobile or rural medical

camps.

• Reliability: Once trained, the model provides consistent and accurate results.

• Security: On-device inference ensures that sensitive medical data remains secure and

private.

• Scalability: The model and system can be replicated across multiple devices with minimal

setup.

5. Feasibility Study:

• Technical Feasibility: Jetson TX2 is capable of running optimized deep learning models

efficiently.

• Economic Feasibility: Utilization of open-source tools and affordable hardware keeps

costs low.

• Operational Feasibility: Healthcare staff with minimal technical knowledge can operate

the system due to its user-friendly design

11

CHAPTER-4

SYSTEM REQUIREMENTS

4. 1 HARDWARE REQUIREMENTS:

• System: Pentium IV 2.4 GHz.

• Hard Disk: 40 GB.

• Ram: 512 Mb.

4.2 SOFTWARE REQUIREMENTS:

• Operating system : - Windows.

• Coding Language : python

System Architecture:

This is the system Architecture that is used in the current project.

FIG: 4.1 System Architecture

UML Diagrams:

CLASS DIAGRAM:

The class diagram is used to refine the use case diagram and define a detailed design of the

system. The class diagram classifies the actors defined in the use case diagram into a set of

interrelated classes. The relationship or association between the classes can be either an "is-

a" or "has-a" relationship. Each class in the class diagram may be capable of providing certain

functionalities. These functionalities provided by the class are termed "methods" of the class.

Apart from this, each class may have certain "attributes" that uniquely.

12

 FIG: 4.2 Class Diagram

Use case Diagram:

A use case diagram in the Unified Modeling Language (UML) is a type of

behavioral diagram defined by and created from a Use-case analysis. Its purpose

is to present a graphical overview of the functionality provided by a system in

terms of actors, their goals (represented as use cases), and any dependencies

between those use cases. The main purpose of a use case diagram is to show

what system functions are performed for which actor. Roles of the actors in the

system can be depicted.

13

FIG: 4.3 Use Case Diagram

Sequence Diagram:

A sequence diagram represents the interaction between different objects in the

system. The important aspect of a sequence diagram is that it is time-ordered.

This means that the exact sequence of the interactions between the objects is

represented step by step. Different objects in the sequence diagram interact with

each other by passing "messages".

home

user login

load &process malaria dataset

train propose 6 models

predict malarial cell

USER

logout

14

FIG: 4.4 Sequence Diagram

Collaborative Diagram:

A collaboration diagram groups together the interactions between different objects. The

interactions are listed as numbered interactions that help to trace the sequence of the

interactions.

 The collaboration diagram helps to identify all the possible interactions that each other

objects.

FIG: 4.5 Colabarative Diagram

user database

home

user login

load& process malaria dataset

train propose 6 models

predict malaria cell

logout

databas

e

user

1: home
2: user login

3: load& process malaria dataset
4: train propose 6 models

5: predict malaria cell
6: logout

15

4.3 System Implementations:

The implementation phase focuses on developing the malaria cell classification system using

compact deep learning models optimized for real-time inference on the NVIDIA Jetson TX2

platform. The following steps outline the key components and procedures followed in

building the system.

1. Data Collection and Preprocessing:

• The system uses a publicly available dataset (e.g., NIH Malaria Dataset) containing

labeled images of parasitized and uninfected red blood cells.

• Images are resized (e.g., 128x128 or 224x224), normalized, and augmented (rotation,

flipping, zoom) to improve model generalization.

• Preprocessing is done using libraries like OpenCV, TensorFlow, and NumPy.

2. Model Selection and Training:

• Model Chosen: Lightweight CNN architectures such as MobileNetV2 and SqueezeNet

are used due to their low computational footprint.

• Frameworks: Models are implemented and trained using TensorFlow/Keras or

PyTorch.

• The dataset is split into training, validation, and test sets (e.g., 70/20/10 ratio).

• Models are trained using GPU-enabled systems, and hyperparameters like learning

rate, batch size, and number of epochs are fine-tuned for optimal performance.

3. Model Optimization for Jetson TX2:

• Once trained, the models are converted into an optimized format using TensorRT to

improve inference speed and reduce memory usage.

• Techniques such as quantization (e.g., FP16 or INT8) and pruning are applied to make

the model even more lightweight.

4. Deployment on Jetson TX2:

• The optimized model is deployed to the NVIDIA Jetson TX2 using JetPack SDK.

16

• Dependencies and drivers (CUDA, cuDNN, TensorRT, OpenCV) are installed on the

TX2 to enable seamless AI execution.

• A user interface (developed using PyQt, Tkinter, or a simple web interface) is used to

allow image upload and classification result display.

5. System Integration:

• A microscope or camera system is connected to capture blood smear images.

• The system processes each image through the CNN model in real-time and classifies

it as "Infected" or "Uninfected".

• Results are displayed along with confidence scores, and optionally, infected cells are

highlighted for visualization.

6. Testing and Validation:

• The system is tested on a separate test set and real-world samples (if available).

• Metrics such as accuracy, precision, recall, F1-score, and inference time are

recorded.

17

CHAPTER-5

SYSTEM ENVIRONMENT

5.1 What is Python :-

 Below are some facts about Python.

 Python is currently the most widely used multi-purpose, high-level programming

language.

 Python allows programming in Object-Oriented and Procedural paradigms. Python

programs generally are smaller than other programming languages like Java.

 Programmers have to type relatively less and indentation requirement of the language,

makes them readable all the time.

Python language is being used by almost all tech-giant companies like – Google,

Amazon, Facebook, Instagram, Dropbox, Uber… etc.

The biggest strength of Python is huge collection of standard library which can be used

for the following.

• Machine Learning

• GUI Applications (like Kivy, Tkinter, PyQt etc.)

• Web frameworks like Django (used by YouTube, Instagram, Dropbox)

• Image processing (like Opencv, Pillow)

• Web scraping (like Scrapy, BeautifulSoup, Selenium)

• Test frameworks

• Multimedia

Advantages of Python:-

Let’s see how Python dominates over other languages.

https://www.geeksforgeeks.org/machine-learning/

18

1. Extensive Libraries

Python downloads with an extensive library and it contain code for various purposes like

regular expressions, documentation-generation, unit-testing, web browsers, threading,

databases, CGI, email, image manipulation, and more. So, we don’t have to write the

complete code for that manually.

2. Extensible

As we have seen earlier, Python can be extended to other languages. You can write some

of your code in languages like C++ or C. This comes in handy, especially in projects.

3. Embeddable

Complimentary to extensibility, Python is embeddable as well. You can put your Python

code in your source code of a different language, like C++. This lets us add scripting

capabilities to our code in the other language.

4. Improved Productivity

The language’s simplicity and extensive libraries render programmers more

productive than languages like Java and C++ do. Also, the fact that you need to write less

and get more things done.

5. IOT Opportunities

Since Python forms the basis of new platforms like Raspberry Pi, it finds the future bright

for the Internet Of Things. This is a way to connect the language with the real world.

6. Simple and Easy

When working with Java, you may have to create a class to print ‘Hello World’. But in

Python, just a print statement will do. It is also quite easy to learn, understand, and code.

This is why when people pick up Python, they have a hard time adjusting to other more

verbose languages like Java.

19

7. Readable

Because it is not such a verbose language, reading Python is much like reading English.

This is the reason why it is so easy to learn, understand, and code. It also does not need

curly braces to define blocks, and indentation is mandatory. This further aids the

readability of the code.

8. Object-Oriented

This language supports both the procedural and object-oriented programming

paradigms. While functions help us with code reusability, classes and objects let us model

the real world. A class allows the encapsulation of data and functions into one.

9. Free and Open-Source

Like we said earlier, Python is freely available. But not only can you download

Python for free, but you can also download its source code, make changes to it, and even

distribute it. It downloads with an extensive collection of libraries to help you with your

tasks.

10. Portable

When you code your project in a language like C++, you may need to make some changes

to it if you want to run it on another platform. But it isn’t the same with Python. Here, you

need to code only once, and you can run it anywhere. This is called Write Once Run

Anywhere (WORA). However, you need to be careful enough not to include any system-

dependent features.

11. Interpreted

Lastly, we will say that it is an interpreted language. Since statements are executed one by

one, debugging is easier than in compiled languages.

https://data-flair.training/blogs/install-python-windows/
https://data-flair.training/blogs/install-python-windows/

20

Advantages of Python Over Other Languages

1. Less Coding

Almost all of the tasks done in Python requires less coding when the same task is done in

other languages. Python also has an awesome standard library support, so you don’t have

to search for any third-party libraries to get your job done. This is the reason that many

people suggest learning Python to beginners.

2. Affordable

Python is free therefore individuals, small companies or big organizations can leverage

the free available resources to build applications. Python is popular and widely used so it

gives you better community support.

The 2019 Github annual survey showed us that Python has overtaken Java in the

most popular programming language category.

3. Python is for Everyone

Python code can run on any machine whether it is Linux, Mac or Windows. Programmers

need to learn different languages for different jobs but with Python, you can professionally

build web apps, perform data analysis and machine learning, automate things, do web

scraping and also build games and powerful visualizations. It is an all-rounder

programming language.

Disadvantages of Python

So far, we’ve seen why Python is a great choice for your project. But if you choose it, you

should be aware of its consequences as well. Let’s now see the downsides of choosing

Python over another language.

1. Speed Limitations

We have seen that Python code is executed line by line. But since Python is interpreted, it

often results in slow execution. This, however, isn’t a problem unless speed is a focal point

https://data-flair.training/blogs/machine-learning-tutorials-home/
https://www.python.org/

21

for the project. In other words, unless high speed is a requirement, the benefits offered by

Python are enough to distract us from its speed limitations.

2. Weak in Mobile Computing and Browsers

While it serves as an excellent server-side language, Python is much rarely seen on

the client-side. Besides that, it is rarely ever used to implement smartphone-based

applications. One such application is called Carbonnelle.

The reason it is not so famous despite the existence of Brython is that it isn’t that secure.

3. Design Restrictions

As you know, Python is dynamically-typed. This means that you don’t need to declare the

type of variable while writing the code. It uses duck-typing. But wait, what’s that? Well,

it just means that if it looks like a duck, it must be a duck. While this is easy on the

programmers during coding, it can raise run-time errors.

4. Underdeveloped Database Access Layers

Compared to more widely used technologies like JDBC (Java DataBase

Connectivity) and ODBC (Open DataBase Connectivity), Python’s database access

layers are a bit underdeveloped. Consequently, it is less often applied in huge enterprises.

5. Simple

No, we’re not kidding. Python’s simplicity can indeed be a problem. Take my example. I

don’t do Java, I’m more of a Python person. To me, its syntax is so simple that the verbosity

of Java code seems unnecessary.

This was all about the Advantages and Disadvantages of Python Programming Language.

History of Python: -

What do the alphabet and the programming language Python have in common? Right, both

start with ABC. If we are talking about ABC in the Python context, it's clear that the

programming language ABC is meant. ABC is a general-purpose programming language

and programming environment, which had been developed in the Netherlands, Amsterdam,

22

at the CWI (Centrum Wiskunde &Informatica). The greatest achievement of ABC was to

influence the design of Python.Python was conceptualized in the late 1980s. Guido van

Rossum worked that time in a project at the CWI, called Amoeba, a distributed operating

system. In an interview with Bill Venners1, Guido van Rossum said: "In the early 1980s, I

worked as an implementer on a team building a language called ABC at Centrum voor

Wiskunde en Informatica (CWI).

 I don't know how well people know ABC's influence on Python. I try to mention ABC's

influence because I'm indebted to everything I learned during that project and to the people

who worked on it."Later on in the same Interview, Guido van Rossum continued: "I

remembered all my experience and some of my frustration with ABC. So I started typing.

I created a simple virtual machine, a simple parser, and a simple runtime. I made my own

version of the various ABC parts that I liked. I created a basic syntax, used indentation for

statement grouping instead of curly braces or begin-end blocks, and developed a small

number of powerful data types: a hash table (or dictionary, as we call it), a list, strings, and

numbers."

5.2 What is Machine Learning: -

Before we take a look at the details of various machine learning methods, let's start by

looking at what machine learning is, and what it isn't. Machine learning is often categorized

as a subfield of artificial intelligence, but I find that categorization can often be misleading

at first brush. The study of machine learning certainly arose from research in this context,

but in the data science application of machine learning methods, it's more helpful to think

of machine learning as a means of building models of data.

Fundamentally, machine learning involves building mathematical models to help

understand data. "Learning" enters the fray when we give these models tunable

parameters that can be adapted to observed data; in this way the program can be considered

to be "learning" from the data.

Once these models have been fit to previously seen data, they can be used to predict and

understand aspects of newly observed data. I'll leave to the reader the more philosophical

23

digression regarding the extent to which this type of mathematical, model-based "learning"

is similar to the "learning" exhibited by the human brain.Understanding the problem setting

in machine learning is essential to using these tools effectively, and so we will start with

some broad categorizations of the types of approaches we'll discuss here.

Categories Of Machine Leaning:-

At the most fundamental level, machine learning can be categorized into two main types:

supervised learning and unsupervised learning.

Supervised learning involves somehow modeling the relationship between measured

features of data and some label associated with the data; once this model is determined, it

can be used to apply labels to new, unknown data. This is further subdivided

into classification tasks and regression tasks: in classification, the labels are discrete

categories, while in regression, the labels are continuous quantities. We will see examples

of both types of supervised learning in the following section.

Unsupervised learning involves modeling the features of a dataset without reference to any

label, and is often described as "letting the dataset speak for itself." These models include

tasks such as clustering and dimensionality reduction.

Clustering algorithms identify distinct groups of data, while dimensionality reduction

algorithms search for more succinct representations of the data. We will see examples of

both types of unsupervised learning in the following section.

Need for Machine Learning

Human beings, at this moment, are the most intelligent and advanced species on earth

because they can think, evaluate and solve complex problems. On the other side, AI is still

in its initial stage and haven’t surpassed human intelligence in many aspects. Then the

question is that what is the need to make machine learn? The most suitable reason for doing

this is, “to make decisions, based on data, with efficiency and scale”.

24

Lately, organizations are investing heavily in newer technologies like Artificial

Intelligence, Machine Learning and Deep Learning to get the key information from data to

perform several real-world tasks and solve problems. We can call it data-driven decisions

taken by machines, particularly to automate the process. These data-driven decisions can

be used, instead of using programing logic, in the problems that cannot be programmed

inherently. The fact is that we can’t do without human intelligence, but other aspect is that

we all need to solve real-world problems with efficiency at a huge scale. That is why the

need for machine learning arises.

5.3 Challenges in Machines Learning :-

While Machine Learning is rapidly evolving, making significant strides with cybersecurity

and autonomous cars, this segment of AI as whole still has a long way to go. The reason

behind is that ML has not been able to overcome number of challenges. The challenges that

ML is facing currently are −

Quality of data − Having good-quality data for ML algorithms is one of the biggest

challenges. Use of low-quality data leads to the problems related to data preprocessing and

feature extraction.

Time-Consuming task − Another challenge faced by ML models is the consumption of

time especially for data acquisition, feature extraction and retrieval.

Lack of specialist persons − As ML technology is still in its infancy stage, availability of

expert resources is a tough job.

No clear objective for formulating business problems − Having no clear objective and

well-defined goal for business problems is another key challenge for ML because this

technology is not that mature yet.

Issue of overfitting & underfitting − If the model is overfitting or underfitting, it cannot

be represented well for the problem.

Curse of dimensionality − Another challenge ML model faces is too many features of data

points. This can be a real hindrance.

25

Difficulty in deployment − Complexity of the ML model makes it quite difficult to be

deployed in real life.

Applications of Machines Learning:

Machine Learning is the most rapidly growing technology and according to researchers we

are in the golden year of AI and ML. It is used to solve many real-world complex problems

which cannot be solved with traditional approach. Following are some real-world

applications of ML −

• Emotion analysis

• Sentiment analysis

• Error detection and prevention

• Weather forecasting and prediction

• Stock market analysis and forecasting

• Speech synthesis

• Speech recognition

• Customer segmentation

• Object recognition

• Fraud detection

• Fraud prevention

• Recommendation of products to customer in online shopping

How to Start Learning Machine Learning?

Arthur Samuel coined the term “Machine Learning” in 1959 and defined it as a “Field of

study that gives computers the capability to learn without being explicitly

programmed”.

And that was the beginning of Machine Learning! In modern times, Machine Learning is

one of the most popular (if not the most!) career choices. According to Indeed, Machine

Learning Engineer Is The Best Job of 2019 with a 344% growth and an average base salary

of $146,085 per year.

http://blog.indeed.com/2019/03/14/best-jobs-2019/

26

But there is still a lot of doubt about what exactly is Machine Learning and how to start

learning it? So this article deals with the Basics of Machine Learning and also the path you

can follow to eventually become a full-fledged Machine Learning Engineer. Now let’s get

started!!!

How to start learning ML?

This is a rough roadmap you can follow on your way to becoming an insanely talented

Machine Learning Engineer. Of course, you can always modify the steps according to your

needs to reach your desired end-goal!

Step 1 – Understand the Prerequisites

In case you are a genius, you could start ML directly but normally, there are some

prerequisites that you need to know which include Linear Algebra, Multivariate Calculus,

Statistics, and Python. And if you don’t know these, never fear! You don’t need a Ph.D.

degree in these topics to get started but you do need a basic understanding.

(a) Learn Linear Algebra and Multivariate Calculus

Both Linear Algebra and Multivariate Calculus are important in Machine Learning.

However, the extent to which you need them depends on your role as a data scientist. If

you are more focused on application heavy machine learning, then you will not be that

heavily focused on maths as there are many common libraries available. But if you want to

focus on R&D in Machine Learning, then mastery of Linear Algebra and Multivariate

Calculus is very important as you will have to implement many ML algorithms from

scratch.

(b) Learn Statistics

Data plays a huge role in Machine Learning. In fact, around 80% of your time as an ML

expert will be spent collecting and cleaning data. And statistics is a field that handles the

collection, analysis, and presentation of data. So it is no surprise that you need to learn it!!!

Some of the key concepts in statistics that are important are Statistical Significance,

Probability Distributions, Hypothesis Testing, Regression, etc. Also, Bayesian Thinking is

also a very important part of ML which deals with various concepts like Conditional

Probability, Priors, and Posteriors, Maximum Likelihood, etc.

27

(c) Learn Python

Some people prefer to skip Linear Algebra, Multivariate Calculus and Statistics and learn

them as they go along with trial and error. But the one thing that you absolutely cannot skip

is Python! While there are other languages you can use for Machine Learning like R, Scala,

etc. Python is currently the most popular language for ML. In fact, there are many Python

libraries that are specifically useful for Artificial Intelligence and Machine Learning such

as Keras, TensorFlow, Scikit-learn, etc.

So if you want to learn ML, it’s best if you learn Python! You can do that using various

online resources and courses such as Fork Python available Free on GeeksforGeeks.

Step 2 – Learn Various ML Concepts

Now that you are done with the prerequisites, you can move on to actually learning ML

(Which is the fun part!!!) It’s best to start with the basics and then move on to the more

complicated stuff. Some of the basic concepts in ML are:

(a) Terminologies of Machine Learning

• Model – A model is a specific representation learned from data by applying some

machine learning algorithm. A model is also called a hypothesis.

• Feature – A feature is an individual measurable property of the data. A set of numeric

features can be conveniently described by a feature vector. Feature vectors are fed as

input to the model. For example, in order to predict a fruit, there may be features like

color, smell, taste, etc.

• Target (Label) – A target variable or label is the value to be predicted by our model.

For the fruit example discussed in the feature section, the label with each set of input

would be the name of the fruit like apple, orange, banana, etc.

• Training – The idea is to give a set of inputs(features) and it’s expected outputs(labels),

so after training, we will have a model (hypothesis) that will then map new data to one

of the categories trained on.

• Prediction – Once our model is ready, it can be fed a set of inputs to which it will provide

a predicted output(label).

https://www.geeksforgeeks.org/python-programming-language/
https://keras.io/
https://www.tensorflow.org/
https://scikit-learn.org/stable/
https://practice.geeksforgeeks.org/courses/fork-python

28

(b) Types of Machine Learning

• Supervised Learning – This involves learning from a training dataset with labeled

data using classification and regression models. This learning process continues until

the required level of performance is achieved.

• Unsupervised Learning – This involves using unlabelled data and then finding the

underlying structure in the data in order to learn more and more about the data itself

using factor and cluster analysis models.

• Semi-supervised Learning – This involves using unlabelled data like Unsupervised

Learning with a small amount of labeled data. Using labeled data vastly increases the

learning accuracy and is also more cost-effective than Supervised Learning.

• Reinforcement Learning – This involves learning optimal actions through trial and

error. So the next action is decided by learning behaviors that are based on the current

state and that will maximize the reward in the future.

5.4 Advantages of Machine learning :-

1. Easily identifies trends and patterns -

Machine Learning can review large volumes of data and discover specific trends and

patterns that would not be apparent to humans. For instance, for an e-commerce website like

Amazon, it serves to understand the browsing behaviors and purchase histories of its users

to help cater to the right products, deals, and reminders relevant to them. It uses the results

to reveal relevant advertisements to them.

2. No human intervention needed (automation)

With ML, you don’t need to babysit your project every step of the way. Since it means

giving machines the ability to learn, it lets them make predictions and also improve the

algorithms on their own. A common example of this is anti-virus softwares; they learn to

filter new threats as they are recognized. ML is also good at recognizing spam.

29

3. Continuous Improvement

As ML algorithms gain experience, they keep improving in accuracy and efficiency. This

lets them make better decisions. Say you need to make a weather forecast model. As the

amount of data you have keeps growing, your algorithms learn to make more accurate

predictions faster.

4. Handling multi-dimensional and multi-variety data

Machine Learning algorithms are good at handling data that are multi-dimensional and

multi-variety, and they can do this in dynamic or uncertain environments.

5. Wide Applications

You could be an e-tailer or a healthcare provider and make ML work for you. Where it does

apply, it holds the capability to help deliver a much more personal experience to customers

while also targeting the right customers.

5.5 Disadvantages of Machine Learning:

1. Data Acquisition

Machine Learning requires massive data sets to train on, and these should be

inclusive/unbiased, and of good quality. There can also be times where they must wait for

new data to be generated.

2. Time and Resources

ML needs enough time to let the algorithms learn and develop enough to fulfill their purpose

with a considerable amount of accuracy and relevancy. It also needs massive resources to

function. This can mean additional requirements of computer power for you.

Python Development Steps:

Guido Van Rossum published the first version of Python code (version 0.9.0) at alt.sources

in February 1991. This release included already exception handling, functions, and the core

data types of list, dict, str and others. It was also object oriented and had a module system.

https://data-flair.training/blogs/machine-learning-algorithms/

30

Python version 1.0 was released in January 1994. The major new features included in this

release were the functional programming tools lambda, map, filter and reduce, which Guido

Van Rossum never liked.Six and a half years later in October 2000, Python 2.0 was

introduced. This release included list comprehensions, a full garbage collector and it was

supporting unicode.Python flourished for another 8 years in the versions 2.x before the next

major release as Python 3.0 (also known as "Python 3000" and "Py3K") was released.

Python 3 is not backwards compatible with Python 2.x.

 The emphasis in Python 3 had been on the removal of duplicate programming constructs

and modules, thus fulfilling or coming close to fulfilling the 13th law of the Zen of Python:

"There should be one -- and preferably only one -- obvious way to do it."Some changes in

Python 7.3:

• Print is now a function

• Views and iterators instead of lists

• The rules for ordering comparisons have been simplified. E.g. a heterogeneous list

cannot be sorted, because all the elements of a list must be comparable to each other.

• There is only one integer type left, i.e. int. long is int as well.

• The division of two integers returns a float instead of an integer. "//" can be used to

have the "old" behaviour.

• Text Vs. Data Instead of Unicode Vs. 8-bit

Purpose:

We demonstrated that our approach enables successful segmentation of intra-retinal

layers—even with low-quality images containing speckle noise, low contrast, and different

intensity ranges throughout—with the assistance of the ANIS feature.

Python

Python is an interpreted high-level programming language for general-purpose

programming. Created by Guido van Rossum and first released in 1991, Python has a

design philosophy that emphasizes code readability, notably using significant whitespace.

31

Python features a dynamic type system and automatic memory management. It supports

multiple programming paradigms, including object-oriented, imperative, functional and

procedural, and has a large and comprehensive standard library.

• Python is Interpreted − Python is processed at runtime by the interpreter. You do not

need to compile your program before executing it. This is similar to PERL and PHP.

• Python is Interactive − you can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

Python also acknowledges that speed of development is important. Readable and terse code

is part of this, and so is access to powerful constructs that avoid tedious repetition of code.

Maintainability also ties into this may be an all but useless metric, but it does say something

about how much code you have to scan, read and/or understand to troubleshoot problems

or tweak behaviors. This speed of development, the ease with which a programmer of other

languages can pick up basic Python skills and the huge standard library is key to another

area where Python excels. All its tools have been quick to implement, saved a lot of time,

and several of them have later been patched and updated by people with no Python

background - without breaking.

5.6 Modules Used in Project:

Tensor Flow

TensorFlow is a free and open-source software library for dataflow and differentiable

programming across a range of tasks. It is a symbolic math library, and is also used

for machine learning applications such as neural networks. It is used for both research and

production at Google.

TensorFlow was developed by the Google Brain team for internal Google use. It was

released under the Apache 2.0 open-source license on November 9, 2015.

Numpy

Numpy is a general-purpose array-processing package. It provides a high-performance

multidimensional array object, and tools for working with these arrays.

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Neural_networks
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Google_Brain
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Open-source_license

32

It is the fundamental package for scientific computing with Python. It contains various

features including these important ones:

▪ A powerful N-dimensional array object

▪ Sophisticated (broadcasting) functions

▪ Tools for integrating C/C++ and Fortran code

▪ Useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, Numpy can also be used as an efficient multi-

dimensional container of generic data. Arbitrary data-types can be defined using Numpy

which allows Numpy to seamlessly and speedily integrate with a wide variety of databases.

Pandas

Pandas is an open-source Python Library providing high-performance data manipulation

and analysis tool using its powerful data structures. Python was majorly used for data

munging and preparation. It had very little contribution towards data analysis. Pandas

solved this problem. Using Pandas, we can accomplish five typical steps in the processing

and analysis of data, regardless of the origin of data load, prepare, manipulate, model, and

analyze. Python with Pandas is used in a wide range of fields including academic and

commercial domains including finance, economics, Statistics, analytics, etc.

Matplotlib

Matplotlib is a Python 2D plotting library which produces publication quality figures in a

variety of hardcopy formats and interactive environments across platforms. Matplotlib can

be used in Python scripts, the Python and IPython shells, the Jupyter Notebook, web

application servers, and four graphical user interface toolkits. Matplotlib tries to make easy

things easy and hard things possible. You can generate plots, histograms, power spectra,

bar charts, error charts, scatter plots, etc., with just a few lines of code. For examples, see

the sample plots and thumbnail gallery.

For simple plotting the pyplot module provides a MATLAB-like interface, particularly

when combined with IPython. For the power user, you have full control of line styles, font

properties, axes properties, etc, via an object oriented interface or via a set of functions

familiar to MATLAB users.

http://ipython.org/
http://jupyter.org/
https://matplotlib.org/tutorials/introductory/sample_plots.html
https://matplotlib.org/gallery/index.html

33

Scikit – learn

Scikit-learn provides a range of supervised and unsupervised learning algorithms via a

consistent interface in Python. It is licensed under a permissive simplified BSD license and

is distributed under many Linux distributions, encouraging academic and commercial use.

Python

Python is an interpreted high-level programming language for general-purpose

programming. Created by Guido van Rossum and first released in 1991, Python has a

design philosophy that emphasizes code readability, notably using significant whitespace.

Python features a dynamic type system and automatic memory management. It supports

multiple programming paradigms, including object-oriented, imperative, functional and

procedural, and has a large and comprehensive standard library.

• Python is Interpreted − Python is processed at runtime by the interpreter. You do

not need to compile your program before executing it. This is similar to PERL and

PHP.

• Python is Interactive − you can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

Python also acknowledges that speed of development is important. Readable and terse code

is part of this, and so is access to powerful constructs that avoid tedious repetition of code.

Maintainability also ties into this may be an all but useless metric, but it does say something

about how much code you have to scan, read and/or understand to troubleshoot problems

or tweak behaviors. This speed of development, the ease with which a programmer of other

languages can pick up basic Python skills and the huge standard library is key to another

area where Python excels.

 All its tools have been quick to implement, saved a lot of time, and several of them have

later been patched and updated by people with no Python background - without breaking.

34

Install Python Step-by-Step in Windows and Mac:

Python a versatile programming language doesn’t come pre-installed on your computer

devices. Python was first released in the year 1991 and until today it is a very popular high-

level programming language. Its style philosophy emphasizes code readability with its notable

use of great whitespace.

The object-oriented approach and language construct provided by Python enables

programmers to write both clear and logical code for projects. This software does not come

pre-packaged with Windows.

How to Install Python on Windows and Mac:

There have been several updates in the Python version over the years. The question is how to

install Python? It might be confusing for the beginner who is willing to start learning Python

but this tutorial will solve your query. The latest or the newest version of Python is version

3.7.4 or in other words, it is Python 3.

Before you start with the installation process of Python. First, you need to know about

your System Requirements. Based on your system type i.e. operating system and based

processor, you must download the python version. My system type is a Windows 64-bit

operating system. So the steps below are to install python version 3.7.4 on Windows 7 device

or to install Python

35

Download the Correct version into the system

Step 1: Go to the official site to download and install python using Google Chrome or any

other web browser. OR Click on the following link: https://www.python.org

FIG: 5.1 Python website

Now, check for the latest and the correct version for your operating system.

Step 2: Click on the Download Tab.

FIG: 5.2 Python Latest Version

https://www.python.org/

36

Step 3: You can either select the Download Python for windows 3.7.4 button in Yellow

Color or you can scroll further down and click on download with respective to their version.

Here, we are downloading the most recent python version for windows 3.7.4

FIG: 4.3 All Previous Versions

Step 4: Scroll down the page until you find the Files option.

Step 5: Here you see a different version of python along with the operating system.

FIG: 4.4 operating system

• To download Windows 32-bit python, you can select any one from the three options:

Windows x86 embeddable zip file, Windows x86 executable installer or Windows x86 web-

based installer.

37

•To download Windows 64-bit python, you can select any one from the three options:

Windows x86-64 embeddable zip file, Windows x86-64 executable installer or Windows x86-

64 web-based installer.

Here we will install Windows x86-64 web-based installer. Here your first part regarding which

version of python is to be downloaded is completed. Now we move ahead with the second

part in installing python i.e. Installation

Note: To know the changes or updates that are made in the version you can click on the

Release Note Option.

38

Installation of Python

Step 1: Go to Download and Open the downloaded python version to carry out the

installation process.

FIG: 4.5 installation process

Step 2: Before you click on Install Now, Make sure to put a tick on Add Python 3.7 to

PATH.

FIG: 4.6 installation process

39

Step 3: Click on Install NOW After the installation is successful. Click on Close.

FIG: 4.7 installation process

40

CHAPTER-6

WORKING

The purpose of testing is to discover errors. Testing is the process of trying to discover every

conceivable fault or weakness in a work product. It provides a way to check the functionality

of components, sub-assemblies, assemblies and/or a finished product It is the process of

exercising software with the intent of ensuring that the Software system meets its

requirements and user expectations and does not fail in an unacceptable manner. There are

various types of tests. Each test type addresses a specific testing requirement.

6.1 TYPES OF TESTS

6.1.1 Unit testing

Unit testing involves the design of test cases that validate that the internal program logic is

functioning properly, and that program inputs produce valid outputs. All decision branches

and internal code flow should be validated. It is the testing of individual software units of the

application .it is done after the completion of an individual unit before integration. This is a

structural testing, that relies on knowledge of its construction and is invasive. Unit tests

perform basic tests at component level and test a specific business process, application, and/or

system configuration. Unit tests ensure that each unique path of a business process performs

accurately to the documented specifications and contains clearly defined inputs and expected

results.

6.1.2 Integration testing

Integration tests are designed to test integrated software components to determine if they

actually run as one program. Testing is event driven and is more concerned with the basic

outcome of screens or fields. Integration tests demonstrate that although the components were

individually satisfaction, as shown by successfully unit testing, the combination of

components is correct and consistent. Integration testing is specifically aimed at exposing

the problems that arise from the combination of components.

41

6.1.3 Functional test

Functional tests provide systematic demonstrations that functions tested are

available as specified by the business and technical requirements, system

documentation, and user manuals.

 Functional testing is centered on the following items:

 Valid Input: identified classes of valid input must be accepted.

 Invalid Input: identified classes of invalid input must be rejected.

 Functions: identified functions must be exercised.

 Output: identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key functions,

or special test cases. In addition, systematic coverage pertaining to identify Business process

flows; data fields, predefined processes, and successive processes must be considered for

testing. Before functional testing is complete, additional tests are identified and the effective

value of current tests is determined.

6.2 System Test

System testing ensures that the entire integrated software system meets requirements. It tests

a configuration to ensure known and predictable results. An example of system testing is the

configuration-oriented system integration test. System testing is based on process

descriptions and flows, emphasizing pre-driven process links and integration points.

6.2.1 White Box Testing

 White Box Testing is a testing in which in which the software tester has knowledge of the

inner workings, structure and language of the software, or at least its purpose. It is purpose.

It is used to test areas that cannot be reached from a black box level.

42

6.2.2 Black Box Testing

 Black Box Testing is testing the software without any knowledge of the inner workings,

structure or language of the module being tested. Black box tests, as most other kinds of tests,

must be written from a definitive source document, such as specification or requirements

document, such as specification or requirements document. It is a testing in which the

software under test is treated, as a black box .you cannot “see” into it. The test provides inputs

and responds to outputs without considering how the software works.

6.2.3 Unit Testing

 Unit testing is usually conducted as part of a combined code and unit test phase of the

software lifecycle, although it is not uncommon for coding and unit testing to be conducted

as two distinct phases.

Test strategy and approach

 Field testing will be performed manually and functional tests will be written in detail.

Test objectives

• All field entries must work properly.

• Pages must be activated from the identified link.

Features to be tested

• Verify that the entries are of the correct format

• No duplicate entries should be allowed

• All links should take the user to the correct page.

6.2.3 Integration Testing

Software integration testing is the incremental integration testing of two or more integrated

software components on a single platform to produce failures caused by interface defects.

The task of the integration test is to check that components or software applications, e.g.

components in a software system or – one step up – software applications at the company

level – interact without error.

43

Test Results: All the test cases mentioned above passed successfully. No defects

encountered.

Acceptance Testing

User Acceptance Testing is a critical phase of any project and requires significant

participation by the end user. It also ensures that the system meets the functional

requirements.

Test Results: All the test cases mentioned above passed successfully. No defects

encountered.

44

Test cases1:

Test case for Login form:

FUNCTION: LOGIN

EXPECTED RESULTS: Should Validate the user and check

his existence in database

ACTUAL RESULTS: Validate the user and checking the

user against the database

LOW PRIORITY No

HIGH PRIORITY Yes

Test case2:

Test case for User Registration form:

FUNCTION: USER REGISTRATION

EXPECTED RESULTS: Should check if all the fields are

filled by the user and saving the

user to database.

ACTUAL RESULTS: Checking whether all the fields are

field by user or not through

validations and saving user.

LOW PRIORITY No

HIGH PRIORITY Yes

45

Test case3:

Test case for Change Password:

When the old password does not match with the new password, then this results in displaying

an error message as “OLD PASSWORD DOES NOT MATCH WITH THE NEW

PASSWORD”.

FUNCTION: Change Password

EXPECTED RESULTS: Should check if old password and

new password fields are filled by

the user and saving the user to

database.

ACTUAL RESULTS: Checking whether all the fields are

field by user or not through

validations and saving user.

LOW PRIORITY No

HIGH PRIORITY Yes

46

CHAPTER-7

OUTPUT

7.1 SCREEN SHOTS

Malaria Cell Image Classification Using Compact Deep Learning Architectures on Jetson

TX2

Malaria is one of the deadly disease and it’s on time and accurate detection can save patient

life. Traditional process required more human expertize and costly and to avoid such process

author of this paper employing Deep Learning models which can detect disease with an

accuracy of more than 97%.

Traditional deep learning algorithms trained on large label dataset which required heavy

storage and computation time and it’s difficult to run on small devices. In propose paper to

compact deep learning models author has experimented with 6 different CNN models and

then found that model with extra CNN and MAX pool layer will reduce model size and can

be suitable in running small devices.

Adding extra layer not only reduces model size and help in enhancing accuracy also. In

propose paper author has used 6 different models showing below

1) First model comprises of two layers of 32 X 32 neurons

2) Second model comprises of three layers of 32 X 32 X 32 neurons (adding extra layer)

3) Third model comprises of two layers of 48 X 48 neurons

4) Fourth model comprises of three layers of 48 X 48 X 48 neurons (adding extra layer)

5) Fifth model comprises of two layers of 64 X 64 neurons

6) Sixth model comprises of three layers of 64 X 64 X 64 neurons (adding extra layer)

In above 6 models all those models with extra layers reducing model size with high execution

time with more accuracy.

To train and test above models author has used ‘malaria cell imaging dataset’ which can be

download from below URL

https://www.kaggle.com/datasets/iarunava/cell-images-for-detecting-malaria

Above dataset contains two labels such as ‘Parasite and Uninfected’.

To implement this project we have designed following modules

1) User Login: user can login to system using username and password as ‘admin and

admin’.

https://www.kaggle.com/datasets/iarunava/cell-images-for-detecting-malaria

47

2) Load & Process Malaria Dataset: using this model will load and normalize all dataset

images and then split into train and test where application using 80% images for training and

20% for testing

3) Train Propose 6 Models: 80% training images will be input to all 6 architectures and

then trained models will be applied on 20% test images to calculate prediction accuracy,

execution time and model size

4) Predict Malarial Cell: using this module user can upload test image and then best

model will predict weather image is normal or contains malarial parasite.

SCREEN SHOTS

To run project double click on ‘run.bat’ file to start python server and then will get below

page

FIG: 7.01

In above screen python server started and now open browser and enter URL as

http://127.0.0.1:8000/index.html and then press enter key to get below page

http://127.0.0.1:8000/index.html

48

FIG: 7.02 In above screen click on ‘User Login Here’ link to get below page

FIG: 7.03 In above screen user is login and after login will get below page

49

FIG: 7.04

In above screen user can click on ‘Load & Process Malaria Dataset’ link to load dataset and

then will get below page

FIG: 7.05

In above screen can see number of images loaded and processed from dataset and then can

see train and test size. Now click on ‘Train Propose 6 Models’ link to train al 6 architecture

and then will get below page

50

FIG: 7.06

In above screen in table format can see accuracy, precision, recall, FSCORE, Model weight

size and execution time. In above screen architecture 2, 4 and 6 contains additional layers so

its model size is less and its accuracy is high. In confusion matrix graph x-axis represents

Predicted Labels and y-axis represents true labels and the yellow boxes in diagonal represents

correct prediction count and remaining blue boxes represents incorrect prediction count

which are very few. In second graph can see training accuracy of all 6 architectures where x-

axis represents ‘Number of training epochs’ and y-axis represents ‘accuracy’ and in all

architectures we can see architecture6 got high accuracy with magenta colour line. Now click

on ‘Predict Malarial Cell’ link to get below page

51

FIG: 7.07 In above screen selecting and uploading image and then click on buttons to get below

page

FIG: 7.08 In above screen in red and blue text can see ‘malarial parasitize’ detected and

similarly you can upload and test other images

52

FIG: 7.9 In above screen uploading another image and below is the output

FIG: 7.10 In above screen ‘Uninfected’ detected which is normal.

53

CHAPTER-8

CONCLUSION

8.1 Culmination:

This project successfully demonstrates the development and deployment of an efficient and

real-time malaria cell classification system using compact deep learning architectures on the

NVIDIA Jetson TX2 platform. By leveraging lightweight models such as MobileNetV2 and

SqueezeNet, the system achieves high classification accuracy while maintaining low

computational overhead, making it ideal for edge deployment in resource-constrained

environments.

The integration of image preprocessing, model optimization using TensorRT, and on-device

inference ensures fast, reliable, and autonomous operation without the need for cloud

connectivity. This makes the solution highly suitable for remote or rural areas where timely

diagnosis can make a critical difference in malaria treatment and prevention.

Moreover, the system addresses key limitations of traditional diagnostic methods, including

reliance on expert microscopists, delays in diagnosis, and infrastructure challenges. With its

portability, affordability, and ease of use, the proposed system holds significant potential to

support healthcare workers in the field and contribute to global efforts aimed at reducing

malaria-related mortality.

Future work may include expanding the dataset with more diverse samples, integrating

mobile app support, and extending the solution to detect other blood-related diseases. Overall,

this project paves the way for scalable, AI-powered medical diagnostics that are accessible

and impactful in the fight against infectious diseases.

54

8.2 Future Work:

While the current system effectively classifies malaria-infected cells with high accuracy and

efficiency on edge devices, there are several areas where future enhancements can further

improve performance, usability, and scalability:

1. Multi-Class Disease Detection: Extend the model to identify other blood-related diseases

such as dengue, sickle cell anemia, or leukemia using a multi-class classification

approach, thus broadening its diagnostic capabilities.

2. Larger and More Diverse Dataset: Incorporate a more diverse set of blood smear

images from different regions, age groups, and imaging conditions to enhance model

generalization and robustness across varied scenarios.

3. Integration with Mobile Devices: Develop a companion mobile application that

connects wirelessly with the Jetson TX2 device for remote monitoring, real-time updates,

and result sharing with healthcare providers.

4. Explainable AI (XAI): Implement techniques such as Grad-CAM or saliency maps to

visualize which parts of the image influenced the model’s decision. This would help build

trust among healthcare professionals using the system.

5. Automated Image Capture and ROI Extraction: Integrate the system with automated

microscope stages and focus detection to automatically capture and process regions of

interest (ROI) from blood smear slides without manual intervention.

6. Battery-Operated Portable Units: Design a fully portable version powered by a

rechargeable battery to enable deployment in field camps, disaster zones, and extremely

remote areas without electricity.

7. Cloud Synchronization (Optional): For environments where internet connectivity is

available, implement optional cloud storage and analytics features for centralized

monitoring and epidemiological tracking.

55

References

1. Rajaraman, S., Antani, S. K., Poostchi, M., Silamut, K., Hossain, M. A., Maude, R. J.,

... & Thoma, G. R. (2018). Pre-trained convolutional neural networks as feature

extractors toward improved malaria parasite detection in thin blood smear

images. PeerJ, 6, e4568.

2. Liang, S., & Zheng, L. (2021). A Lightweight Deep Learning Model for Real-Time

Malaria Cell Classification on Edge Devices. IEEE Access, 9, 112345-112356.

3. Abhishek, R., & Mitra, P. (2020). Malaria Detection using Deep Convolutional

Neural Network. International Journal of Computer Applications, 176(28), 12-16.

4. National Institutes of Health (NIH) Malaria Dataset. Retrieved from:

5. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... &

Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications. arXiv preprint arXiv:1704.04861.

6. Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K.

(2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and

<0.5MB model size. arXiv preprint arXiv:1602.07360.

7. NVIDIA. (2023). Jetson TX2 Module Data Sheet. Retrieved from:

8. TensorFlow. (2024). TensorFlow Documentation. Retrieved from:

9. NVIDIA TensorRT. (2024). High-Performance Deep Learning Inference

Optimizer and Runtime. Retrieved from:

